ในการเขียนแผนภาพแทนเซต เราเขียนรูปปิดสี่เหลี่ยมมุมฉากแทนเอกภพสัมพัทธ์ และรูปปิดวงกลม หรือวงรีแทนสับเซตของเอกภพสัมพัทธ์ ดังนี้
เราเรียกแผนภาพดังกล่าวข้างต้นนี้ว่า "แผนภาพเวนน์ - ออยเลอร์" (Venn-Euler Diagram)
• ยูเนียน (Union)
บทนิยาม เซต A ยูเนียนกับเซต B คือเซตซึ่งประกอบด้วยสมาชิกที่เป็นสมาชิกของเซต A หรือ เซต B หรือทั้ง A และ B สามารถเขียนแทนได้ด้วย สัญลักษณ์ A ∪ B
ตัวอย่างเช่น
A ={1,2,3}
B= {3,4,5}
∴ A ∪ B = {1,2,3,4,5}
• อินเตอร์เซกชัน (Intersection)
บทนิยาม เซต A อินเตอร์เซกชันเซต B คือ เซตซึ่งประกอบด้วยสมาชิกที่เป็นสมาชิกของเซต A และเซต B สามารถเขียนแทนได้ด้วยสัญลักษณ์ A ∩ B
ตัวอย่างเช่น
A ={1,2,3}
B= {3,4,5}
∴ A ∩ B = {3}
• คอมพลีเมนต์ (Complements)
บทนิยาม ถ้าเซต A ใดๆ ในเอกภพสัมพัทธ์ U แล้วคอมพลีเมนต์ของเซต A คือ เซตที่ประกอบด้วยสมาชิกที่เป็นสมาชิกของ U
บทนิยาม ถ้าเซต A ใดๆ ในเอกภพสัมพัทธ์ U แล้วคอมพลีเมนต์ของเซต A คือ เซตที่ประกอบด้วยสมาชิกที่เป็นสมาชิกของ U
แต่ไม่เป็นสมาชิกของ A สามารถเขียนแทนได้ด้วยสัญลักษณ์ A'
ตัวอย่างเช่น
ตัวอย่างเช่น
U = {1,2,3,4,5}
A ={1,2,3}∴ A' = {4,5}
A ={1,2,3}∴ A' = {4,5}
ไม่มีความคิดเห็น:
แสดงความคิดเห็น