วันพฤหัสบดีที่ 5 กันยายน พ.ศ. 2556

ทฤษฎีพีทาโกรัส



 

ปีทาโกรัส (Pythagoras) ประมาณ 572 - 500 ก่อนคริสต์ศักราช 
ประวัติ 
                      ปีทาโกรัสเป็นชาวกรีก เกิดที่เกาะซามอสใกล้กับเอเซียไมเนอร์ เนื่องจากทรราช Polycrates ท่านจำต้องออกจากเกาะซามอส กล่าวกันว่าท่านเคยศึกษาที่อียิปต์และ เป็นศิษย์ของทาลิส ปีทาโกรัสได้ก่อตั้งสำนักปิทาโกเรียน ที่เมือง Crotona ซึ่งอยู่ทางตอนใต้ของ ประเทศอิตาลี ปีทาโกรัสคิดว่าปริมาณต่าง ๆ ในธรรมชาติสามารถเขียนในรูปเศษส่วนของ จำนวนนับ จนมีคำขวัญของสำนักว่า "ทุกสิ่งคือจำนวนนับ" เมื่อมีการค้นพบจำนวนอตรรกยะขึ้น ทำให้ปีทาโกรัสและศิษย์ทั้งหลายเสียขวัญและกำลังใจ เมื่อทางราชการขับไล่เพราะกล่าวหาว่า สำนักปีทาโกเรียนเป็นสถาบันศักดินา สำนักปีทาโกเรียนก็สูญสลายไป 
ผลงาน 
                 เราไม่ทราบแน่ชัดว่าผลงานชิ้นใดเป็นของปีทาโกรัส ชิ้นใดเป็นของลูกศิษย์ จึงกล่าวรวม ๆ ว่าเป็นของสำนักปีทาโกเรียน ซึ่งมีดังนี้
1.
จำนวนคู่และจำนวนคี่ 
2.
ค้นพบความสัมพันธ์ระหว่างเศษส่วนกับทฤษฎีของดนตรี 
3.
จำนวนเชิงรูปเหลี่ยม เช่น จำนวนเชิงสามเหลี่ยม , จำนวนเชิงจตุรัส 
4.
จำนวนอตรรกยะ 
5.
พีชคณิตเชิงเรขาคณิต 
6.
พิสูจน์ทฤษฎีบทปีทาโกรัส

 ปีทาโกรัส (Pythagoras) ประมาณ 572 - 500 ก่อนคริสต์ศักราช 
ประวัติ 
ปีทาโกรัสเป็นชาวกรีก เกิดที่เกาะซามอสใกล้กับเอเซียไมเนอร์ เนื่องจากทรราช Polycrates ท่านจำต้องออกจากเกาะซามอส กล่าวกันว่าท่านเคยศึกษาที่อียิปต์และ เป็นศิษย์ของทาลิส ปีทาโกรัสได้ก่อตั้งสำนักปิทาโกเรียน ที่เมือง Crotona ซึ่งอยู่ทางตอนใต้ของ ประเทศอิตาลี ปีทาโกรัสคิดว่าปริมาณต่าง ๆ ในธรรมชาติสามารถเขียนในรูปเศษส่วนของ จำนวนนับ จนมีคำขวัญของสำนักว่า "ทุกสิ่งคือจำนวนนับ" เมื่อมีการค้นพบจำนวนอตรรกยะขึ้น ทำให้ปีทาโกรัสและศิษย์ทั้งหลายเสียขวัญและกำลังใจ เมื่อทางราชการขับไล่เพราะกล่าวหาว่า สำนักปีทาโกเรียนเป็นสถาบันศักดินา สำนักปีทาโกเรียนก็สูญสลายไป 
ผลงาน 
เราไม่ทราบแน่ชัดว่าผลงานชิ้นใดเป็นของปีทาโกรัส ชิ้นใดเป็นของลูกศิษย์ จึงกล่าวรวม ๆ ว่าเป็นของสำนักปีทาโกเรียน ซึ่งมีดังนี้ :- 
1. จำนวนคู่และจำนวนคี่ 
2. ค้นพบความสัมพันธ์ระหว่างเศษส่วนกับทฤษฎีของดนตรี 
3. จำนวนเชิงรูปเหลี่ยม เช่น จำนวนเชิงสามเหลี่ยม , จำนวนเชิงจตุรัส 
4. จำนวนอตรรกยะ 
5. พีชคณิตเชิงเรขาคณิต 
6. พิสูจน์ทฤษฎีบทปีทาโกรัส

ตามที่ได้กล่าวไปแล้วข้างต้น หาก c แทนความยาวด้านตรงข้ามมุมฉาก และ a และ b แทนความยาวของอีกสองด้านที่เหลือแล้ว ทฤษฎีบทพีทาโกรัสจะสามารถเขียนในรูปสมการพีทาโกรัสได้ดังนี้


ถ้าทราบความยาวของทั้ง a และ b ค่า c จะสามารถคำนวณได้ดังนี้
ถ้าทราบความยาวด้านตรงข้ามมุมฉาก c และด้านประชิดมุมฉากด้านใดด้านหนึ่ง (a หรือ b) แล้ว ความยาวด้านที่เหลือสามารถคำนวณได้ดังนี้


หรือ


ทฤษฎีบทพีทาโกรัสกำหนดความสัมพันธ์ของด้านทั้งสามของสามเหลี่ยมมุมฉากอย่างง่าย เพื่อที่ว่าถ้าทราบความยาวของด้านสองด้าน ก็จะสามารถหาความยาวของด้านที่เหลือได้ อีกบทแทรกหนึ่งของทฤษฎีบทพีทาโกรัสคือ ในสามเหลี่ยมมุมฉากใด ๆ ด้านตรงข้ามมุมฉากจะยาวกว่าสองด้านที่เหลือ แต่สั้นกว่าผลรวมของทั้งสอง
ทฤษฎีบทดังกล่าวสามารถกล่าวโดยสรุปได้เป็นกฎของโคซายน์ ซึ่งเมื่อให้ความยาวของด้านทั้งสองและขนาดของมุมระหว่างด้านนั้นมา จะสามารถคำนวณหาความยาวด้านที่สามของสามเหลี่ยมใด ๆ ได้ ถ้ามุมระหว่างด้านเป็นมุมฉาก กฎของโคซายน์จะย่อลงเหลือทฤษฎีบทพีทาโกรัส




แหล่งที่มา   :    http://bit.ly/z9ORaL

http://www.goonone.com/index.php/-11-/571--12-

ไม่มีความคิดเห็น:

แสดงความคิดเห็น