ปีทาโกรัส (Pythagoras) ประมาณ 572 - 500 ก่อนคริสต์ศักราช
ประวัติ ปีทาโกรัสเป็นชาวกรีก เกิดที่เกาะซามอสใกล้กับเอเซียไมเนอร์ เนื่องจากทรราช Polycrates ท่านจำต้องออกจากเกาะซามอส กล่าวกันว่าท่านเคยศึกษาที่อียิปต์และ เป็นศิษย์ของทาลิส ปีทาโกรัสได้ก่อตั้งสำนักปิทาโกเรียน ที่เมือง Crotona ซึ่งอยู่ทางตอนใต้ของ ประเทศอิตาลี ปีทาโกรัสคิดว่าปริมาณต่าง ๆ ในธรรมชาติสามารถเขียนในรูปเศษส่วนของ จำนวนนับ จนมีคำขวัญของสำนักว่า "ทุกสิ่งคือจำนวนนับ" เมื่อมีการค้นพบจำนวนอตรรกยะขึ้น ทำให้ปีทาโกรัสและศิษย์ทั้งหลายเสียขวัญและกำลังใจ เมื่อทางราชการขับไล่เพราะกล่าวหาว่า สำนักปีทาโกเรียนเป็นสถาบันศักดินา สำนักปีทาโกเรียนก็สูญสลายไป
ผลงาน
เราไม่ทราบแน่ชัดว่าผลงานชิ้นใดเป็นของปีทาโกรัส ชิ้นใดเป็นของลูกศิษย์ จึงกล่าวรวม ๆ ว่าเป็นของสำนักปีทาโกเรียน ซึ่งมีดังนี้ 1. จำนวนคู่และจำนวนคี่ 2. ค้นพบความสัมพันธ์ระหว่างเศษส่วนกับทฤษฎีของดนตรี 3. จำนวนเชิงรูปเหลี่ยม เช่น จำนวนเชิงสามเหลี่ยม , จำนวนเชิงจตุรัส 4. จำนวนอตรรกยะ 5. พีชคณิตเชิงเรขาคณิต 6. พิสูจน์ทฤษฎีบทปีทาโกรัส |
ปีทาโกรัส (Pythagoras) ประมาณ 572 - 500 ก่อนคริสต์ศักราช
ประวัติ
ปีทาโกรัสเป็นชาวกรีก เกิดที่เกาะซามอสใกล้กับเอเซียไมเนอร์ เนื่องจากทรราช Polycrates ท่านจำต้องออกจากเกาะซามอส กล่าวกันว่าท่านเคยศึกษาที่อียิปต์และ เป็นศิษย์ของทาลิส ปีทาโกรัสได้ก่อตั้งสำนักปิทาโกเรียน ที่เมือง Crotona ซึ่งอยู่ทางตอนใต้ของ ประเทศอิตาลี ปีทาโกรัสคิดว่าปริมาณต่าง ๆ ในธรรมชาติสามารถเขียนในรูปเศษส่วนของ จำนวนนับ จนมีคำขวัญของสำนักว่า "ทุกสิ่งคือจำนวนนับ" เมื่อมีการค้นพบจำนวนอตรรกยะขึ้น ทำให้ปีทาโกรัสและศิษย์ทั้งหลายเสียขวัญและกำลังใจ เมื่อทางราชการขับไล่เพราะกล่าวหาว่า สำนักปีทาโกเรียนเป็นสถาบันศักดินา สำนักปีทาโกเรียนก็สูญสลายไป
ผลงาน
เราไม่ทราบแน่ชัดว่าผลงานชิ้นใดเป็นของปีทาโกรัส ชิ้นใดเป็นของลูกศิษย์ จึงกล่าวรวม ๆ ว่าเป็นของสำนักปีทาโกเรียน ซึ่งมีดังนี้ :-
1. จำนวนคู่และจำนวนคี่
2. ค้นพบความสัมพันธ์ระหว่างเศษส่วนกับทฤษฎีของดนตรี
3. จำนวนเชิงรูปเหลี่ยม เช่น จำนวนเชิงสามเหลี่ยม , จำนวนเชิงจตุรัส
4. จำนวนอตรรกยะ
5. พีชคณิตเชิงเรขาคณิต
6. พิสูจน์ทฤษฎีบทปีทาโกรัส
ตามที่ได้กล่าวไปแล้วข้างต้น หาก c แทนความยาวด้านตรงข้ามมุมฉาก และ a และ b แทนความยาวของอีกสองด้านที่เหลือแล้ว ทฤษฎีบทพีทาโกรัสจะสามารถเขียนในรูปสมการพีทาโกรัสได้ดังนี้
ถ้าทราบความยาวของทั้ง a และ b ค่า c จะสามารถคำนวณได้ดังนี้
ถ้าทราบความยาวด้านตรงข้ามมุมฉาก c และด้านประชิดมุมฉากด้านใดด้านหนึ่ง (a หรือ b) แล้ว ความยาวด้านที่เหลือสามารถคำนวณได้ดังนี้
หรือ
ทฤษฎีบทพีทาโกรัสกำหนดความสัมพันธ์ของด้านทั้งสามของสามเหลี่ยมมุมฉากอย่างง่าย เพื่อที่ว่าถ้าทราบความยาวของด้านสองด้าน ก็จะสามารถหาความยาวของด้านที่เหลือได้ อีกบทแทรกหนึ่งของทฤษฎีบทพีทาโกรัสคือ ในสามเหลี่ยมมุมฉากใด ๆ ด้านตรงข้ามมุมฉากจะยาวกว่าสองด้านที่เหลือ แต่สั้นกว่าผลรวมของทั้งสอง
ทฤษฎีบทดังกล่าวสามารถกล่าวโดยสรุปได้เป็นกฎของโคซายน์ ซึ่งเมื่อให้ความยาวของด้านทั้งสองและขนาดของมุมระหว่างด้านนั้นมา จะสามารถคำนวณหาความยาวด้านที่สามของสามเหลี่ยมใด ๆ ได้ ถ้ามุมระหว่างด้านเป็นมุมฉาก กฎของโคซายน์จะย่อลงเหลือทฤษฎีบทพีทาโกรัส
http://www.goonone.com/index.php/-11-/571--12-
แหล่งที่มา : http://bit.ly/z9ORaL
http://www.goonone.com/index.php/-11-/571--12-
ไม่มีความคิดเห็น:
แสดงความคิดเห็น